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Abstract

Info-Gap is supposedly a new theory for decision making under severe un-
certainty. Its claim to fame is that it is non-probabilistic in nature and thus
offers an alternative to all current theories for decision making under uncer-
tainty. In this short article I explain the Gap in Info-Gap, that is I explain how
Info-Gap resolves the gap between the information we need and the informa-
tion we have. It turns out that this is done not by a new theory but rather by
a famous, more than 60-year old recipe commonly called worst-case analysis or
simply Maximin.

Keywords: Decision making, severe uncertainty, maximin, worst-case analysis, info-
gap.

1 Introduction

The objective of this very short essay is to clarify the GAP in Info-Gap, that is to
explain how Info-Gap bridges the large gap between the information we need and the
information we have in decision making under severe uncertainty.

I explained this in a rather technical language in a short paper entitled Eureka!
Info-Gap is Worst Case Analysis (maximin) is disguise! (Sniedovich [2006b]) and in
a lengthy full paper (Sniedovich [2006a].

In this paper I explain the same thing, but in a non-technical language. The
point is that the issues involved are so fundamental that it is not necessary to go
deep into the technical/mathematical aspects of the problem. Common sense is all
that is required to understand the true nature of Info-Gap.
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To motivate the discussion, recall that

Info-gap decision theory is radically different from all current theories of
decision under uncertainty. The difference originates in the modelling of
uncertainty as an information gap rather than as a probability.

Ben-Haim [2006, p.xii]

and

An information-gap model of uncertainty is a non-probabilistic quantifica-
tion of uncertainty. Info-gap models entail no measure functions: neither
probability densities nor fuzzy membership functions2. Info-gap models
concentrate on the disparity between what is known and what could be
known, while making very little commitment about the structure of the
uncertainty.

Ben-Haim [2006, p. 2]

and

Probability and info-gap modeling each emerged as a struggle between
rival intellectual schools. Some philosophers of science have tended to
evaluate the info-gap approach in terms of how it would serve physical
science in place of probability. This is like asking how probability would
have served scholastic demonstrative reasoning in the place of Aristotelian
logic; the answer: not at all. But then, probability arose from challenges
different from those which faced the scholastics, just as the info-gap deci-
sion theory which we will develop in this book aims to meet new challenges.

Ben-Haim [2006, p. 12]

and

The place to start our investigation of the difference between probability
and info-gap uncertainty is with the question: can ignorance be modelled
probabilistically? The answer is ‘no’. The ignorance that is important
to the decision maker is the disparity between is known and needs to be
known in order to make a responsible decision; ignorance is an info-gap.

Ben-Haim [2006, p. 12]

and so on, and so on, . . .

To cut a long story short, Info-Gap wants us to believe that it offers a new, rad-
ically different approach to modeling severe uncertainty in decision making, namely
that it has a new recipe for bridging the gap between the information we need and
the information we have in a decision making situation under severe uncertainty.

For the purposes of our discussion it is more convenient to express the same idea
slightly differently: how do we make decisions in situations where the exact value of
a parameter we use in the decision model is subject to severe uncertainty?
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The standard way of dealing with generic problems of this type is to use an
estimate of the exact value of the parameter of interest. That is, in the decision
model we use an estimate of the exact value of the parameter of interest rather than
the exact value of this parameter. We do it all the time.

Needless to say, in cases where there is severe uncertainty regarding the exact value
of the parameter of interest, we have to be very careful the way we use estimates.
After all, in this environment the estimates can be of very poor quality, that is, they
are likely to be substantially wrong.

To explain how info-Gap deals with this fundamental issue it would be helpful to
consider firstly the way classical decision theory copes with this fundamental, difficult
issue.

2 Textbook Recipes

To appreciate the difficulty posed by severe uncertainty, it is instructive to consider
less extreme situations, that is situations where the uncertainty associated with the
exact value of the parameter of interest is not severe.

So recall that classical decision theory distinguishes between three types of decision
making situations as far as uncertainty is concerned:

· Decision making under certainty.

· Decision making under risk.

· Decision making under strict uncertainty.

The first case represents situations where we pretend that there is no uncertainty
at all regarding the decision making situation.

The second case represents situations where the uncertainty involved with the
decision making situation can be described and quantified by conventional statistical
and probabilistic models and/or methods.

The third case is the most difficult. Here we do not know much about the conse-
quences of our decisions and therefore there is not much to work with to develop a
solid, comprehensive, and useful decision making methodology.

For the purposes of our discussion it is best to regard the first two cases as “easy”
and to focus on the third case.

So let us begin with the observation that classical decision theory suggests no
magical foolproof recipes for dealing with such situations. What it does offer is a pair
of fundamental approaches, to wit principles, that can be considered in situations
like this.

Over the years these two principles became famous, or rather infamous, because
both are very problematic. In any case, here is the celebrated duo:

· Laplace′s Principle of insufficient Reason (1825)

· Wald′s Maximin Principle (1945)
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In brief, Laplace’s Principle suggests that if you really do not know anything
about the exact value of the parameter of interest, then it is reasonable to assume
that all its “potential” values are equally likely.

Technically speaking, this means that you can regard the parameter of interest as
a random variable associated with a uniform probability distribution function over
the set of potential values this parameter can take. There are of course cases where
this is impossible, eg. in cases where the set of potential values of the parameter is
unbounded.

The attractiveness of this principle stems from the fact that it transforms a difficult
problem (decision making under strict uncertainty) into a relatively “easy” problem
(decision making under risk).

The Maximin Principle goes much further: it transforms a decision making situ-
ation under strict uncertainty into a decision making situation under certainty.

It does this magical trick by following my dear wife’s attitude towards risk: as a
rule the worst possible thing will happen. That is, this principle assumes that Mother
Nature is playing against us in that it always selects the least favorable value for
the parameter of interest. This, of course, is a very pessimistic view of how Mother
Nature works, but . . . this is what worst-case analysis is all about.

But my wife is in very a good company here. As noted by Rustem and Howe[2002],
the basic idea behind worst-case analysis predates Wald (1902-1950):

The gods to-day stand friendly, that we may,
Lovers of peace, lead on our days to age!
But, since the affairs of men rest still incertain,
Let’s reason with the worst that may befall.

William Shakespeare (1564 - 1616)
Julius Caesar, Act 5, Scene 1

The attractiveness of this attitude towards uncertainty is that it transforms a dif-
ficult problem (decision making under strict uncertainty) into a “very easy” problem
(decision making under certainty). That is, we exploit the fact that Mother Nature is
so antagonistic that it becomes completely predictable. This removes the uncertainty
altogether and we are left with a simple deterministic problem.

2.1 Example

Suppose that one lovely morning you find four envelopes and a note on your doorstep.
For your convience, the full text of the note is shown in Exhibit 1. For your conve-
nience Table 1 depicts the information Joe provided on the four envelopes.

So what do you do Dear Sir/Madam? Which envelope should you open?

Table 2 summarizes the results obtained by applying the two principles to our
little problem. Each envelope is evaluated in accordance with the two recipes. The
Wald column selects the smallest entry in the Possible Amounts column, whereas
the Laplace column computes the arithmetic average of the entries in the Possible
Amounts column.
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Good morning Sir/Madam:

I left on your doorstep four envelopes. Each contains some money. You
are welcome to open any one of these envelopes and keep the money
you find there.

Please note that as soon as you open an envelope the other three will
automatically dissolve, so think carefully about which one of these en-
velopes you should open.

To help you decide what you should do, I printed on each envelope the
possible amounts of money (in Australian dollars) you may find there.
The amount that is actually there is equal to one of these figures.

Unfortunately the entire project is under severe uncertainty so I cannot
tell more than this.

Good luck!

Joe.

Exhibit 1: Joe’s Note

Envelope Possible Amounts (Australian dollars)

E1 20, 10, 300, 786
E2 2, 4000000, 102349, 500000000, 99999999, 56435432
E3 201, 202
E4 200

Table 1: Easy Problem

Envelope Possible Amounts Wald Laplace

E1 20, 10, 300, 786 10 279

E2 2, 4000000, 10234 2 1336745.3333
√

E3 201, 202 201
√

201.5

E4 200 200 200

Table 2: Results

For instance, consider the first envelope, E1. The super pessimistic Wald assumes
that the worst value will materialize. Hence, it selects the smallest of the items on
the list 20, 10, 300, 786, which is 10.

Laplace assumes that the amount in E1 is a uniformly distributed random variable
on this very list. Hence, the expected value is the arithmetic mean of the elements
on the list: 1

4
(20 + 10 + 300 + 786) = 279.
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In short, if you follow Wald you’ll open the third envelope, E3, and if you follow
Laplace you’ll open the second envelope, E2.

What would you do, dear reader?

2.2 Summary

The two basic principles offered by classical decision theory for decision making under
strict uncertainty transform the severe uncertainty into something easier to cope with:
if we follow Laplace, we end up in a decision making under risk environment, if we
follow Wald we end up in a decision making under certainty environment.

Now, since Info-Gap claims to be a new theory, one that is radically different
from all current decision theories, we expect it to be radically different from these
two principles. And since it claims to be a probabilistic-free theory, it is only natural
to expect Info-Gap to explain in what way it is radically different from the worst-case
analysis dictated by Wald’s Maximin Principle.

Let us see.

3 Info-Gap

The first thing to note is that Info-Gap violates the fundamental maxim of decision
making under severe uncertainty. This practical rule argues as follows:

Fundamental Maxim of decision making under severe uncertainty

Thou shalt not base your analysis on a single estimate!

That is, the centerpiece of the Info-Gap decision model is an estimate of the true
value of the parameter of interest.

Now, of course info-Gap is fully aware of the fact that such an estimate is of poor
quality and is likely to be substantially wrong. So to compensate for this violation of
the Fundamental Maxim, Info-Gap ranks decisions on the basis of their robustness:
the best decision is one whose robustness is the largest. That is, the objective func-
tion in the Info-Gap model stipulates the robustness of the decisions and the model
dictates that this robustness must be maximized.

But how do you define robustness of a decision under severe uncertainty?

Well, Info-Gap does this by the deployment of a very simple worst-case analysis
in the immediate neighborhood of the estimate it deploys. In other words, it insists
that a certain performance requirement must be satisfied – in the worst case sense –
in a region surrounding the estimate. The “size” of this region is a measure of the
robustness of the decision.

In short, the best decision is one that satisfies the performance requirement – in
the worst case sense – over the largest region surrounding the estimate.
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This strategy is described graphically in Figure 1, where ũ denotes the estimate
and the regions surrounding it are circles. Each circle represents a decision: the circle
representing decision a is the largest circle over which decision a satisfies the per-
formance requirement for all values of u in the circle. If we attempt to expand this
circle any further then some point in the expanded region will not satisfy the perfor-
mance requirement. In the parlance of worst-case analysis, the worst point (as far
as performance is concerned) in the expanded circle will not satisfy the performance
requirement.

a

b

ũ
r

Region of Severe Uncertainty

ru

true value

Figure 1: The fundamental flaw in Info-Gap treatment of severe uncertainty

Since the circle representing decision b is larger than the circle representing decision
a, we regard b as a more robust, hence better, decision. If these are the only decisions
available to us, we shall declare b to be the winner, hence optimal.

Needless to say, the fact that b is more robust than a in the neighborhood of the
estimate ũ does not imply that b is more robust than a in the neighborhood of the
exact value of the parameter. So the question arises:

How does Info-Gap justify this very naive approach to severe uncertainty?

The answer is: it does not.

In other words, Info-Gap seems to be fully content with the idea that one can base
decision making under severe uncertainty on an analysis of the immediate region
surrounding a very poor estimate of the parameter of interest that is likely to be
substantially wrong.

To put it bluntly, this does not make much sense.

In fact, this attitude reveals that Info-Gap suffers from a severe case of split
personality. On one hand Info-Gap is very clear that under severe uncertainty decision
making models should not be based on single point estimates because these estimates
are poor and likely to be substantially wrong. But on the other hand, for some strange
reason, Info-Gap does not heed to its own advice on this matter and happily conducts
its business in clear violation of the Fundamental Maxim.
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In any case, Figure 2 illustrates the fundamental flaw in Info-Gap treatment of
severe uncertainty.

a

b

a

b

ũ
r

Region of Severe Uncertainty

ru

Figure 2: The fundamental flaw in Info-Gap treatment of severe uncertainty

It reminds us the obvious. The fact that decision a is more robust than decision
b in the neighborhood around the estimate ũ does not imply that a is more robust
than b in the region surrounding the true value of the parameter of interest, u.

4 The GAP in Info-Gap

So here is the Info-Gap Recipe for bridging the gap between the the information
we need (true value of u) and the information we have (a poor estimate of u) in a
probabilistic-free style:

· Use whatever estimate you have, knowing full well that it is of poor quality and
can be substantially wrong.

· Conduct worst-case analysis in regions surrounding the poor estimate.

In short, Info-Gap is a specialized worst-case analysis conducted around a poor
estimate of the parameter of interest.

The funny thing is that Info-Gap is apparently unaware that this is actually
what it does. How would you explain Info-Gap’s claim that in the framework of its
uncertainty region there is no worst case?

5 Illustrative Example

You plan to buy a present for you dog Rex, a beautiful 7 year old German shepherd.
This year you decided to buy him an educational game. There are two brands in
your local pet shop, Charisma and Agility. The manuals of these games provide the
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operating charts shown in Figure 3. The games are suitable only for dogs whose BI
and IQ scores are within the shaded areas on the charts1.

The question is: which brand should you buy for Rex – Charisma or Agility?

-

6BI

IQ
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Recommended operating region
Charisma

-

6BI

IQ

r
−4
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7.5

radius = 3.5

Recommended operating region
Agility

Figure 3: Operating Charts for the two brands

We shall now briefly discuss four versions of this problem. Three are associated
with different levels of uncertainty pertaining to Rex’s BI and IQ scores, and one
has nothing to do with uncertainty.

Observe that in the framework of the Info-Gap model, here we have two decisions
(brands) and the operating charts are the regions over which the respective decisions
(brands) satisfy the performance requirements. The parameter of interest u is the
pair of (IQ, BI) scores.

Version 1: Certainty.

Here we assume that we have the exact scores for Rex. The choice seems to be
obvious: we can choose any brand as long as Rex’s scores are within the specified
operating region of the brand.

Version 2: Strict Uncertainty.

Suppose that we do not have any information about Rex’s scores. Given the
extreme level of uncertainty, it seems that the best thing to do is go for the brand
whose operating region is the largest. In our case this is the operating region of
Agility, so it looks like this would be the best choice.

Note that to apply Info-Gap here we would need an estimate of the true value of
the scores.

Version 3: Pretty good estimates.

Suppose that we do not have the exact values of Rex’s scores, but we do have
pretty good estimates of these scores. Let a denote the estimate of the IQ score and

1BI is short for Barking Index.
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let b denote the estimate of the BI score. In this case we may wish to play it safe
and select the brand providing the largest safe deviation from the estimates.

We shall conduct the worst-case analysis graphically. You are encouraged to do
it analytically on your own.

Suppose that the two estimates are ũ = (a, b) = (6, 6). How far can we go
from these estimates and still be in the operating region of a brand? To answer
this question, we can draw circles centered at the point ũ = (6, 6) on the charts. We
increase the radius of these circles until they are not fully contained in the operating
regions, as shown in Figure 4.

Clearly, for these estimates Charisma seems to be far safer as the radius of the
largest safe circle on its chart is much larger than the radius of the largest safe circle
on the Agility chart.

-

6BI

IQ

−5

|

6.5

qq

Charisma

-

6BI

IQ

−4

|

7.5

q

Agility

Figure 4: Worst Case Analysis

It is important to note that if the estimates we have are not good, the analysis
could be much more complicated. For example, suppose that the estimates are poor
and all we know is that the true values are somewhere on the line segment connecting
the two end points (6, 6) and (9, 5) on the IQ/BI plane.

Figure 5 displays the worst-case analysis for these two end points. Note that
Charisma seems to be the better brand for the point (6, 6) whereas Agility seems to
be the better brand for the point (9, 5).

So, which brand should you buy for Rex in this case?

The point is that if you do not have a good estimate and you try to use a number
of estimates, it is not clear which one of them should be used to determine the best
decision.

Interestingly, Info-Gap behaves as if the estimate it uses is of very good quality
so there is no need to consider other estimates. But how can you get a good estimate
under severe uncertainty? You can’t.

The next version we examine has nothing to do with uncertainty. I discuss it to
emphasize that the scope of worst-case analysis goes beyond problems dealing with
uncertainty.
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Figure 5: Worst Case Analysis

Version 4: Variability

Consider the case where before you went shopping with Rex, you called Jack the
Vet and were told that Rex’s scores are precisely 7 for the IQ and 7 for BI.

What do you do in this case?

Since both brands are suitable for Rex in this case, it really does not matter which
brand you decide to buy. But, on second thought, how about . . . Rex’s friends? They
always play with Rex’s toys and games.

In view of this additional consideration, you now want a brand that will be suitable
not only for Rex, but also for his friends. In short, you want a brand that will be
suitable for Rex but capable of handling the largest possible variability from Rex’s
scores. Since Rex’s friends have similar IQ and BI scores, you decided to conduct
the worst-case analysis in the immediate neighborhood of Rex’s scores on the IQ/BI
plane.

So formally, you are interested in the brand whose operation chart can cope (safely)
with the largest deviation from the point (7, 7) on the IQ/BI plane.

The solution generated by the worst-case analysis for this version of the problem
is shown in Figure 6. The clear winner is no doubt Charisma, so it looks like Rex and
his friends will play Charisma for the rest of the year.

Hopefully, as promised by the manufactures, this will increase their IQ scores and
decrease their BI scores.2

6 Conclusions

The basic strategy deployed by Info-Gap to bridge the information gap between the
the information we need and the information we have violates the Fundamental Maxim

of decision making under severe uncertainty.
The idea to use worse case analysis to transform a probabilistic problem into a

deterministic problem is more than 60 years old and is well known in the decision
theory literature as Wald’s Maximin Principle.

2In subsequent papers on this subject I’ll report on Rex’s progress on the IQ/BI front.
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Figure 6: Worst Case Analysis

It is not clear therefore what Info-Gap contributes to the state of the art in decision
making under severe uncertainty.

Technical details concerning the role and place of Info-Gap in decision theory can
be found in Sniedovich [2006a, 2006b].
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