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Abstract

Info-Gap is supposedly a new theory for decision making under severe uncer-

tainty. Its claim to fame is that it is non-probabilistic in nature and thus offers

an alternative to all current theories for decision making under uncertainty. In

this short article I explain why Info-Gap’s uncertainty model is flawed and why

there is no reason to believe that the solutions generated by Info-Gap are likely

to be robust, let alone optimal and robust.
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1 Introduction

As we should all know only too well, it is conceptually wrong (in general) to deduce
conclusions about global behavior from a local search. For example, in general, the
deployment of a local search procedure in a given small neighborhood of the feasible
region is unlikely to generate a global optimal solution.

For similar reasons, it is very unlikely that an analysis based on a point1 estimate
of an unknown parameter will generate a robust solution, especially if the estimate is
subject to severe uncertainty.

1an element of the topological space under consideration.
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It is therefore rather intriguing that Info-Gap (Ben-Haim [2001, 2006]) claims that
the solutions it generates are robust. After all, Info-Gap’s uncertainty model is based
on a single estimate of a parameter whose true value is subject to severe uncertainty.

How could it be?

In this short discussion I explain why there is no reason to believe that the solutions
generated by Info-Gap are likely to be robust, let alone optimal and robust.

2 Generic Info-Gap model

The generic Info-Gap model consists of the following ingredients:

· A decision space, Q.

· An uncertainty space U .

· A real valued function R on Q × U .

· A critical reward value rc.

· An estimate ũ of a parameter u ∈ U whose true value is unknown.

· A set of nested regions of uncertainty, U(α, ũ) ⊆ U , α ≥ 0 such that U(0, ũ) =
{ũ} and U(α, ũ) is non-decreasing with α, namely α > α′ implies U(α′, ũ) ⊆
U(α, ũ).

The Info-Gap recipe goes like this:

The robustness of decision q ∈ Q is defined as

α̂(q, rc) : = max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

(1)

That is, it is the largest value of α such that the requirement rc ≤ R(q, u) is
satisfied for all u ∈ U(α, ũ).

The best decision is then one whose robustness is the largest. To find such a
decision we thus have to solve the following optimization problem:

α̂(rc) : = max
q∈Q

α̂(q, rc) (2)

= max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

(3)

In words, our mission is to find the largest value of α such that the constraint
rc ≤ R(q, u) is satisfied for all u in U(α, ũ) for some q ∈ Q.

With no loss of generality we assume that rc ≤ R(q, ũ) for all q ∈ Q. Any q ∈ Q

that does not satisfy this requirement can be removed from Q at the outset.
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3 Local vs Global analysis

It is very unfortunate that the Info-Gap notation hides the fact that the analysis is
local par excellence. To fix this let us re-write the model properly:

α̂(q, rc, ũ) : = max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

(4)

α̂(rc, ũ) : = max
q∈Q

α̂(q, rc) (5)

= max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

(6)

The correction involves the inclusion of the estimate ũ as an argument in the
expressions for the robustness of a decision, namely α̂(q, rc, ũ) and the robustness for
the maximal robustness α̂(rc, ũ).

This correction is a reminder that the analysis is based on a single point estimate
of the unknown value of the parameter of interest. That is, the analysis is based only
on ũ and its immediate neighborhood.

In any case, the question is this: how should we interpret these measures of ro-
bustness? Are they of a global or local nature with regard to the region of uncertainty
U? Do they incorporate features of possible values of u in specific neighborhoods of
U? Or are they based on representative values of u appropriately selected from U to
ensure that they adequately represent the whole of U?

This, of course, is a rhetorical question. The Info-Gap analysis is based on regions
of U in the immediate neighborhood of the estimate ũ. The correction above is just
a reminder that this is the case.

So, how should we interpret α̂(q, rc, ũ)?

However we interpret it, clearly, to make sense the interpretation should be local
in nature, that is, local to the region of uncertainty U(α◦, ũ) where α◦ = α̂(q, rc, ũ).
And since the analysis is under severe uncertainty, we can assume that in all likelihood
the true value of u is far away from the estimate ũ.

A schema of this nature is shown in Figure 1, where the region of uncertainty
U(α◦, ũ) is shown as a circle centered at ũ.

To be blunt, given that the true value of u is far away from the region U(α◦, ũ),
why should we care at all about the analysis conducted in this region? And why
should we bother at all about the fact that the decision q is robust in that region?

The short answer is: we should not.

In other words, associated as it is with a region in the neighborhood of the estimate
ũ, the robustness considered by the Info-Gap model is local in nature. It is local
by design, and should therefore be interpreted as such. The trouble is that under
severe uncertainty of u’s true value, such a local notion of robustness is a very poor

indication of the true robustness and can be substantially wrong .

I should add that what is shown in Figure 1 is “on scale” and is confirmed by
numerical experiments with simple problems (Sniedovich [2006]).
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Figure 1: The region of uncertainty

The puzzling thing about this entire business is that Info-Gap itself warns us
against the use of a point estimate in decision making under severe uncertainty.
Indeed, Info-Gap goes out of its way – and rightly so – to do so. It stresses that under
severe uncertainty it is “wrong” to base our decision on a single point estimate of
the uncertainty parameter under consideration. The argument is simple: under severe
uncertainty estimates are of poor quality and are likely to be substantially wrong.

To illustrate the issues involved, suppose that you have to choose an option, or
alternative, from a given collection of n options or alternatives. Let vi denote the
value of option i, i = 1, . . . , n and assume that “larger is better” so ideally, under
conditions of strict certainty, you would select the option whose vi value is largest.

But what should we do in cases where the exact values of vi, i = 1, 2 . . . , n are
unknown and are subject to severe uncertainty? For example, consider the following
concrete case:

option, i vi v̂i

1 ? 17
2 ? 21
3 ? 18

assuming that the estimates v̂i, i = 1, 2, 3, are subject to severe uncertainty.
Here is Info-Gap’s expert advice on the fundamental issue represented by such

simple decision making problems:

The value of vi is highly uncertain and possibly varying in time, so that
historical evidence is of limited utility. The best estimate of the value of
option i is ṽi. For instance, this might be an historical mean, perhaps
over a limited time window, and perhaps with temporal lag. Since things
change, or since the long-range mean deviates greatly from the mean on
short time intervals, the estimate is a poor indication of the true value
that will accrue from option i the next time a choice is made.

Ben-Haim [2006, p. 280]
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In other words, Info-Gap argues the obvious: estimates obtained under severe
uncertainty should be regarded as poor approximations of the true values they
represent.

Now, let ṽi denote the best estimate we have for the true value of vi and let i∗

denote the option whose ṽi value is largest, namely let i∗ = arg max{ṽi : i = 1, . . . , n}.
Here is what Info-Gap says about the choice of option i∗ as the best (optimal)

option:

The large value of ṽi∗ is desirable. But ṽi∗ is only an estimate of the
value of option i, and this estimate is likely to be substantially wrong.
An additional reason that large ṽi∗ is attractive is the implicit assumption
that, since ṽi∗ is large, then the actual value of option i∗ is also large even
if ṽi∗ errs. This of course is not necessarily true.

Ben-Haim [2006, p. 281]

In other words, Info-Gap warns us against the simplistic policy of ranking alter-
natives on the basis of poor estimates resulting from severe uncertainty. The reason:
these estimates are likely to be substantially wrong .

Who can argue against this sound advice?

Theorem 1. Info-Gap’s uncertainty model is fundamentally flawed and there is no
reason to believe that the solutions it generates are likely to be robust.

Proof. Info-Gap correctly argues that under severe uncertainty ũ should be regarded
as a poor estimate of the true value of u and is very likely to be substantially wrong.
Since the robustness indices α̂(rc, ũ) and α̂(rc, ũ) are based on this poor estimate,
they themselves must be regarded as poor indicators of the true robustness indices
(around the true value of u). Hence, there is no reason to believe that solutions it
generated are likely to be robust. QED

One of the consequences of the local nature of Info-Gap’s uncertainty model is
that the generic Info-Gap model is completely oblivious to the “size” of the total
region of uncertainty, call it U, in relation to the “size”, α̂(rc), of the optimal region
of uncertainty U(α̂(rc), ũ). More precisely,

Theorem 2. Info-Gap does not deal with severe uncertainty, it simply ignores it.
More precisely, the generic Info-Gap model is invariant with the “size” of total region
of uncertainty U: the value of α̂(rc) does not vary with U for all U such that U(α̂(rc)+
ε, ũ) ⊆ U for some ε > 0.

Proof. Let α∗ := α̂(rc) and U∗ := U(α∗ + ε, ũ), ε > 0. We have to show that α∗

does not vary with U for all U such that U∗ ⊆ U. This follows immediately from
the nesting property of the regions of uncertainty U(α, ũ), α ≥ 0 and the worst-case
characteristic of robustness stipulated in the definition of α̂(rc). QED

This point is illustrated in Figure 2 where three regions of uncertainty are dis-
played, U ⊂ U′ ⊂ U′′. The same solution, α∗, is obtained for any region of uncertainty
containing the set U(α∗, ũ) represented by the circle.
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Figure 2: Illustration of Theorem 2

To appreciate the implication of this fact consider the following case: you have
just solved a decision making problem under severe uncertainty using Info-Gap and
obtain an optimal decision q∗ whose robustness is α∗ = α̂(rc) = α̂(q∗, rc). Then you
discover the bad news that you actually severely underestimated the severity of the
uncertainty associated with your problem: the level of uncertainty is 1000-fold larger!
That is, the true total region of uncertainty U is 1000-fold larger.

Since this news means that the updated total region of uncertainty contains the
old one, there is no change in the Info-Gap’s analysis and the same results will be
generated: there is no change is the optimal decision and there is no change in its
robustness.

Isn’t this ridiculous?

4 Robust Optimization

The good news is that there has been a lot of progress in the area of Robust Opti-
mization over the past thirty years so there are today methods and techniques for
obtaining robust optimal solutions in the framework of decision making under severe
uncertainty.

By coincidence, a special issue of the journal Mathematical Programming dedi-
cated to Robust Optimization was published this year (Ben-Tal et al [2006]).

It is unfortunate that Info-Gap seems to be unaware of the extensive body of
knowledge available in this area of optimization, which is very relevant to what Info-
Gap is attempting to do.

5 The (missing) Maximin Connection

For some strange reason, Info-Gap is completely oblivious to the fact that its generic
model is an instance of the famous Wald’s Maximin model (Wald [1945, 1950]). What
is so special about Info-Gap’s deployment of Wald’s old and very established model
is that the analysis is conducted in the immediate neighborhood of a poor estimate
of the parameter of interest.
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More on this bizarre and problematic aspect of Info-Gap can be found in Sniedovich
[2006, 2006a].

6 Conclusion

The notion of robustness deployed by Info-Gap is – by design – local in nature relative
to the total region of uncertainty. Therefore, this notion should be used with care in
decision making under severe uncertainty where – as a rule – the estimates are poor
and very likely to be substantially wrong.

In short, Info-Gap’s uncertainty model is fundamentally flawed because it does
not deal with severe uncertainty, it simply ignores it. Info-Gap’s recipe involves then
two ingredients:

· Replacing severe uncertainty by a poor estimate of the parameter of interest,
knowing full well that it is likely to be substantially wrong.

· Conducting a standard Maximin analysis in the immediate neighborhood of this
estimate.

The first amounts to practicing voodoo decision making. Figure 1 speaks for itself.
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